Перевод: с английского на все языки

со всех языков на английский

John made

  • 1 John made her his wife

    English-Dutch dictionary > John made her his wife

  • 2 john

    n AmE sl
    1)
    2)

    She was waiting for her john to come out of prison — Она ждала, когда ее сожитель выйдет из тюрьмы

    3)

    The hustlers sat on the steps and called to their johns as they passed by — Проститутки сидели на ступеньках и окликали своих клиентов, когда те проходили мимо

    She led the john into a dark passage where the guys mugged him — Она завела клиента в темный переулок, где его грабанули парни

    4)

    He's pretty smart at figgerin' out what a john'll pay — Он сразу может прикинуть, на какую сумму можно расколоть того или иного охламона

    The john went straight to the cops and told the whole thing — Чувак, которого насадили, сразу обратился в полицию и все рассказал

    5)

    John or no john I don't take that kind of stuff — Полицейский ты или нет, я не позволю так разговаривать со мной

    Some john was around asking for you — Здесь про тебя спрашивал один тип, по-моему, оттуда

    The new dictionary of modern spoken language > john

  • 3 John

    1) Общая лексика: Джон, Иван, Йон
    2) Разговорное выражение: сортир
    3) Религия: От Иоанна святое благовествование, (An apostle who according to various Christian traditions wrote the fourth Gospel, the three Johannine Epistles, and the Book of Revelation) Иоанн Богослов (апостол от Двенадцати, евангелист), (Antipope during January 844. He was saved from being murdered by the noble faction through the intervention of Sergius II, consecrated Pope at St. Peter's without imperial sanction, who then imprisoned him in a monastery) антипапа Иоанн, (Any of three short didactic letters addressed to early Christians and included in the New Testament) Первое, Второе или Третье соборное послание св. апостола Иоанна Богослова, (One of the most popular Popes of all times - reigned 1958-63- who inaugurated a new era in the history of the Roman Catholic Church by his openness to change, shown especially in his convoking of the second Vatican Council) Иоанн XXIII, (Pope from 1276 to 1277, one of the most scholarly pontiffs in papal history) Иоанн XXI, (Pope from 523 to 526 who ended the Acacian Schism - 484-519 - thus reuniting the Eastern and Western churches by restoring peace between the papacy and the Byzantine emperor Justin I) Иоанн I, (Pope from 533 to 535 and the first pontiff to change his original name, which he considered pagan) Иоанн II, (Pope from 701 to 705. In his only extant letter, John ordered the restoration of the deposed bishop St. Wilfrid of York) Иоанн VI, (Pope from 705 to 707 who was noted for his devotion to the Virgin Mary and for his energetic restoration of Roman churches) Иоанн VII, (Pope from 898 to 900. His councils made compulsory the presence of an imperial emissary at papal elections) Иоанн IX, (Pope from 914 to 928 who approved the severe rule of the newly founded Benedictine order of Cluny) Иоанн X, (Pope from 931 to about 935, the son of Marozia, dominant lady of the Roman Crescentii family. In 932/933 he was confined by his half-brother Alberic II to the Lateran and remained a prisoner until his death) Иоанн XI, (Pope from 955 to 964 who was elected when he was only about 18 years of age) Иоанн XII, (Pope from 965 to 972. His alliance with the imperial family made his pontificate peaceful) Иоанн XIII, (Pope from 983 to 984. His sole extant document is a letter to Archbishop Alo of Benevento, Italy, concerning church reform) Иоанн XIV, (Pope from July 23, 685, to August 2, 686. A man of learning and generosity, he made liberal donations for the poor) Иоанн V, (Second Avignon Pope - reigned 1316-34 - who centralized church administration, condemned the Spiritual Franciscans, and, against Emperor Louis IV, upheld papal authority over imperial elections) Иоанн XXII, (The fourth Gospel in the NewTestament) Евангелие от Иоанна, (XXIII)(Schismatic antipope from 1410 to 1415) Иоанн (XXIII)
    7) Имена и фамилии: Джон (имя) (100%)

    Универсальный англо-русский словарь > John

  • 4 john

    1) Общая лексика: Джон, Иван, Йон
    2) Разговорное выражение: сортир
    3) Религия: От Иоанна святое благовествование, (An apostle who according to various Christian traditions wrote the fourth Gospel, the three Johannine Epistles, and the Book of Revelation) Иоанн Богослов (апостол от Двенадцати, евангелист), (Antipope during January 844. He was saved from being murdered by the noble faction through the intervention of Sergius II, consecrated Pope at St. Peter's without imperial sanction, who then imprisoned him in a monastery) антипапа Иоанн, (Any of three short didactic letters addressed to early Christians and included in the New Testament) Первое, Второе или Третье соборное послание св. апостола Иоанна Богослова, (One of the most popular Popes of all times - reigned 1958-63- who inaugurated a new era in the history of the Roman Catholic Church by his openness to change, shown especially in his convoking of the second Vatican Council) Иоанн XXIII, (Pope from 1276 to 1277, one of the most scholarly pontiffs in papal history) Иоанн XXI, (Pope from 523 to 526 who ended the Acacian Schism - 484-519 - thus reuniting the Eastern and Western churches by restoring peace between the papacy and the Byzantine emperor Justin I) Иоанн I, (Pope from 533 to 535 and the first pontiff to change his original name, which he considered pagan) Иоанн II, (Pope from 701 to 705. In his only extant letter, John ordered the restoration of the deposed bishop St. Wilfrid of York) Иоанн VI, (Pope from 705 to 707 who was noted for his devotion to the Virgin Mary and for his energetic restoration of Roman churches) Иоанн VII, (Pope from 898 to 900. His councils made compulsory the presence of an imperial emissary at papal elections) Иоанн IX, (Pope from 914 to 928 who approved the severe rule of the newly founded Benedictine order of Cluny) Иоанн X, (Pope from 931 to about 935, the son of Marozia, dominant lady of the Roman Crescentii family. In 932/933 he was confined by his half-brother Alberic II to the Lateran and remained a prisoner until his death) Иоанн XI, (Pope from 955 to 964 who was elected when he was only about 18 years of age) Иоанн XII, (Pope from 965 to 972. His alliance with the imperial family made his pontificate peaceful) Иоанн XIII, (Pope from 983 to 984. His sole extant document is a letter to Archbishop Alo of Benevento, Italy, concerning church reform) Иоанн XIV, (Pope from July 23, 685, to August 2, 686. A man of learning and generosity, he made liberal donations for the poor) Иоанн V, (Second Avignon Pope - reigned 1316-34 - who centralized church administration, condemned the Spiritual Franciscans, and, against Emperor Louis IV, upheld papal authority over imperial elections) Иоанн XXII, (The fourth Gospel in the NewTestament) Евангелие от Иоанна, (XXIII)(Schismatic antipope from 1410 to 1415) Иоанн (XXIII)
    7) Имена и фамилии: Джон (имя) (100%)

    Универсальный англо-русский словарь > john

  • 5 John (Pope from 898 to 900. His councils made compulsory the presence of an imperial emissary at papal elections)

    Религия: Иоанн IX

    Универсальный англо-русский словарь > John (Pope from 898 to 900. His councils made compulsory the presence of an imperial emissary at papal elections)

  • 6 John (Pope from 965 to 972. His alliance with the imperial family made his pontificate peaceful)

    Религия: Иоанн XIII

    Универсальный англо-русский словарь > John (Pope from 965 to 972. His alliance with the imperial family made his pontificate peaceful)

  • 7 John (Pope from July 23, 685, to August 2, 686. A man of learning and generosity, he made liberal donations for the poor)

    Религия: Иоанн V

    Универсальный англо-русский словарь > John (Pope from July 23, 685, to August 2, 686. A man of learning and generosity, he made liberal donations for the poor)

  • 8 Harrison, John

    [br]
    b. 24 March 1693 Foulby, Yorkshire, England
    d. 24 March 1776 London, England
    [br]
    English horologist who constructed the first timekeeper of sufficient accuracy to determine longitude at sea and invented the gridiron pendulum for temperature compensation.
    [br]
    John Harrison was the son of a carpenter and was brought up to that trade. He was largely self-taught and learned mechanics from a copy of Nicholas Saunderson's lectures that had been lent to him. With the assistance of his younger brother, James, he built a series of unconventional clocks, mainly of wood. He was always concerned to reduce friction, without using oil, and this influenced the design of his "grasshopper" escapement. He also invented the "gridiron" compensation pendulum, which depended on the differential expansion of brass and steel. The excellent performance of his regulator clocks, which incorporated these devices, convinced him that they could also be used in a sea dock to compete for the longitude prize. In 1714 the Government had offered a prize of £20,000 for a method of determining longitude at sea to within half a degree after a voyage to the West Indies. In theory the longitude could be found by carrying an accurate timepiece that would indicate the time at a known longitude, but the requirements of the Act were very exacting. The timepiece would have to have a cumulative error of no more than two minutes after a voyage lasting six weeks.
    In 1730 Harrison went to London with his proposal for a sea clock, supported by examples of his grasshopper escapement and his gridiron pendulum. His proposal received sufficient encouragement and financial support, from George Graham and others, to enable him to return to Barrow and construct his first sea clock, which he completed five years later. This was a large and complicated machine that was made out of brass but retained the wooden wheelwork and the grasshopper escapement of the regulator clocks. The two balances were interlinked to counteract the rolling of the vessel and were controlled by helical springs operating in tension. It was the first timepiece with a balance to have temperature compensation. The effect of temperature change on the timekeeping of a balance is more pronounced than it is for a pendulum, as two effects are involved: the change in the size of the balance; and the change in the elasticity of the balance spring. Harrison compensated for both effects by using a gridiron arrangement to alter the tension in the springs. This timekeeper performed creditably when it was tested on a voyage to Lisbon, and the Board of Longitude agreed to finance improved models. Harrison's second timekeeper dispensed with the use of wood and had the added refinement of a remontoire, but even before it was tested he had embarked on a third machine. The balance of this machine was controlled by a spiral spring whose effective length was altered by a bimetallic strip to compensate for changes in temperature. In 1753 Harrison commissioned a London watchmaker, John Jefferys, to make a watch for his own personal use, with a similar form of temperature compensation and a modified verge escapement that was intended to compensate for the lack of isochronism of the balance spring. The time-keeping of this watch was surprisingly good and Harrison proceeded to build a larger and more sophisticated version, with a remontoire. This timekeeper was completed in 1759 and its performance was so remarkable that Harrison decided to enter it for the longitude prize in place of his third machine. It was tested on two voyages to the West Indies and on both occasions it met the requirements of the Act, but the Board of Longitude withheld half the prize money until they had proof that the timekeeper could be duplicated. Copies were made by Harrison and by Larcum Kendall, but the Board still continued to prevaricate and Harrison received the full amount of the prize in 1773 only after George III had intervened on his behalf.
    Although Harrison had shown that it was possible to construct a timepiece of sufficient accuracy to determine longitude at sea, his solution was too complex and costly to be produced in quantity. It had, for example, taken Larcum Kendall two years to produce his copy of Harrison's fourth timekeeper, but Harrison had overcome the psychological barrier and opened the door for others to produce chronometers in quantity at an affordable price. This was achieved before the end of the century by Arnold and Earnshaw, but they used an entirely different design that owed more to Le Roy than it did to Harrison and which only retained Harrison's maintaining power.
    [br]
    Principal Honours and Distinctions
    Royal Society Copley Medal 1749.
    Bibliography
    1767, The Principles of Mr Harrison's Time-keeper, with Plates of the Same, London. 1767, Remarks on a Pamphlet Lately Published by the Rev. Mr Maskelyne Under the
    Authority of the Board of Longitude, London.
    1775, A Description Concerning Such Mechanisms as Will Afford a Nice or True Mensuration of Time, London.
    Further Reading
    R.T.Gould, 1923, The Marine Chronometer: Its History and Development, London; reprinted 1960, Holland Press.
    —1978, John Harrison and His Timekeepers, 4th edn, London: National Maritime Museum.
    H.Quill, 1966, John Harrison, the Man who Found Longitude, London. A.G.Randall, 1989, "The technology of John Harrison's portable timekeepers", Antiquarian Horology 18:145–60, 261–77.
    J.Betts, 1993, John Harrison London (a good short account of Harrison's work). S.Smiles, 1905, Men of Invention and Industry; London: John Murray, Chapter III. Dictionary of National Biography, Vol. IX, pp. 35–6.
    DV

    Biographical history of technology > Harrison, John

  • 9 Wilkinson, John

    SUBJECT AREA: Weapons and armour
    [br]
    b. 1728 Clifton, Cumberland, England
    d. 14 July 1808 Bradley, Staffordshire, England
    [br]
    English ironmaster, inventor of a cannon-boring machine.
    [br]
    Wilkinson's father Isaac was a farmer turned ironmaster. Soon after 1750, the family acquired Bersham furnace, near Wrexham. This was later in the hands of John and his brother William. By 1763, John had risen to take sole charge of Broseley furnace near Coalbrookdale, Shropshire, and in 1770 he set up a third furnace at Bradley, Staffordshire. By this time he had become one of the country's leading ironmasters, known for the wide range of ware made of cast iron, doubtless the reason for his nickname "Ironmad Wilkinson". He made a cast-iron boat which, to the surprise of many, floated. For his own eventual use, he also made a cast-iron coffin, but did not make sufficient allowance for increasing girth with age! Wilkinson's most notable invention was his cannon-boring machine, patented in 1774. The gun barrel was held rigidly while the cutter head moved forward on a rod inside a hollow boring bar. The machine was easily adapted to bore the cylinders for Boulton \& Watt's steam engines and he became a regular supplier, as only he could bore them with the required accuracy. On the other hand, their second engine was supplied to Wilkinson to power a blowing engine to provide air blast for his Broseley furnace: this was the first use of a Boulton \& Watt engine for a purpose other than pumping. By 1780 he had three further steam engines at work. Wilkinson installed the first Boulton \& Watt engine in France at the Paris waterworks, for which he supplied the iron pipes. Another patent was obtained in 1794 for the invention of the cupola or furnace for melting metal for small castings, although it is now thought that the real inventor was his brother William. Apart from domestic and engineering ironware, Wilkinson was supplier of arms to the American and, illicitly, to the French.
    [br]
    Further Reading
    H.W.Dickinson, 1914, John Wilkinson, Iron-master.
    LRD

    Biographical history of technology > Wilkinson, John

  • 10 Kay (of Bury), John

    SUBJECT AREA: Textiles
    [br]
    b. 16 July 1704 Walmersley, near Bury, Lancashire, England
    d. 1779 France
    [br]
    English inventor of the flying shuttle.
    [br]
    John Kay was the youngest of five sons of a yeoman farmer of Walmersley, near Bury, Lancashire, who died before his birth. John was apprenticed to a reedmaker, and just before he was 21 he married a daughter of John Hall of Bury and carried on his trade in that town until 1733. It is possible that his first patent, taken out in 1730, was connected with this business because it was for an engine that made mohair thread for tailors and twisted and dressed thread; such thread could have been used to bind up the reeds used in looms. He also improved the reeds by making them from metal instead of cane strips so they lasted much longer and could be made to be much finer. His next patent in 1733, was a double one. One part of it was for a batting machine to remove dust from wool by beating it with sticks, but the patent is better known for its description of the flying shuttle. Kay placed boxes to receive the shuttle at either end of the reed or sley. Across the open top of these boxes was a metal rod along which a picking peg could slide and drive the shuttle out across the loom. The pegs at each end were connected by strings to a stick that was held in the right hand of the weaver and which jerked the shuttle out of the box. The shuttle had wheels to make it "fly" across the warp more easily, and ran on a shuttle race to support and guide it. Not only was weaving speeded up, but the weaver could produce broader cloth without any aid from a second person. This invention was later adapted for the power loom. Kay moved to Colchester and entered into partnership with a baymaker named Solomon Smith and a year later was joined by William Carter of Ballingdon, Essex. His shuttle was received with considerable hostility in both Lancashire and Essex, but it was probably more his charge of 15 shillings a year for its use that roused the antagonism. From 1737 he was much involved with lawsuits to try and protect his patent, particularly the part that specified the method of winding the thread onto a fixed bobbin in the shuttle. In 1738 Kay patented a windmill for working pumps and an improved chain pump, but neither of these seems to have been successful. In 1745, with Joseph Stell of Keighley, he patented a narrow fabric loom that could be worked by power; this type may have been employed by Gartside in Manchester soon afterwards. It was probably through failure to protect his patent rights that Kay moved to France, where he arrived penniless in 1747. He went to the Dutch firm of Daniel Scalongne, woollen manufacturers, in Abbeville. The company helped him to apply for a French patent for his shuttle, but Kay wanted the exorbitant sum of £10,000. There was much discussion and eventually Kay set up a workshop in Paris, where he received a pension of 2,500 livres. However, he was to face the same problems as in England with weavers copying his shuttle without permission. In 1754 he produced two machines for making card clothing: one pierced holes in the leather, while the other cut and sharpened the wires. These were later improved by his son, Robert Kay. Kay returned to England briefly, but was back in France in 1758. He was involved with machines to card both cotton and wool and tried again to obtain support from the French Government. He was still involved with developing textile machines in 1779, when he was 75, but he must have died soon afterwards. As an inventor Kay was a genius of the first rank, but he was vain, obstinate and suspicious and was destitute of business qualities.
    [br]
    Bibliography
    1730, British patent no. 515 (machine for making mohair thread). 1733, British patent no. 542 (batting machine and flying shuttle). 1738, British patent no. 561 (pump windmill and chain pump). 1745, with Joseph Stell, British patent no. 612 (power loom).
    Further Reading
    B.Woodcroft, 1863, Brief Biographies of Inventors or Machines for the Manufacture of Textile Fabrics, London.
    J.Lord, 1903, Memoir of John Kay, (a more accurate account).
    Descriptions of his inventions may be found in A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the
    Industrial Revolution, Manchester; and C.Singer (ed.), 1957, A History of
    Technology, Vol. III, Oxford: Clarendon Press. The most important record, however, is in A.P.Wadsworth and J. de L. Mann, 1931, The Cotton Trade and Industrial
    Lancashire, Manchester.
    RLH

    Biographical history of technology > Kay (of Bury), John

  • 11 Stringfellow, John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 December 1799 Sheffield, England
    d. 13 December 1883 Chard, England
    [br]
    English inventor and builder of a series of experimental model aeroplanes.
    [br]
    After serving an apprenticeship in the lace industry, Stringfellow left Nottingham in about 1820 and moved to Chard in Somerset, where he set up his own business. He had wide interests such as photography, politics, and the use of electricity for medical treatment. Stringfellow met William Samuel Henson, who also lived in Chard and was involved in lacemaking, and became interested in his "aerial steam carriage" of 1842–3. When support for this project foundered, Henson and Stringfellow drew up an agreement "Whereas it is intended to construct a model of an Aerial Machine". They built a large model with a wing span of 20 ft (6 m) and powered by a steam engine, which was probably the work of Stringfellow. The model was tested on a hillside near Chard, often at night to avoid publicity, but despite many attempts it never made a successful flight. At this point Henson emigrated to the United States. From 1848 Stringfellow continued to experiment with models of his own design, starting with one with a wing span of 10 ft (3m). He decided to test it in a disused lace factory, rather than in the open air. Stringfellow fitted a horizontal wire which supported the model as it gained speed prior to free flight. Unfortunately, neither this nor later models made a sustained flight, despite Stringfellow's efficient lightweight steam engine. For many years Stringfellow abandoned his aeronautical experiments, then in 1866 when the (Royal) Aeronautical Society was founded, his interest was revived. He built a steam-powered triplane, which was demonstrated "flying" along a wire at the world's first Aeronautical Exhibition, held at Crystal Palace, London, in 1868. Stringfellow also received a cash prize for one of his engines, which was the lightest practical power unit at the Exhibition. Although Stringfellow's models never achieved a really successful flight, his designs showed the way for others to follow. Several of his models are preserved in the Science Museum in London.
    [br]
    Principal Honours and Distinctions
    Member of the (Royal) Aeronautical Society 1868.
    Bibliography
    Many of Stringfellow's letters and papers are held by the Royal Aeronautical Society, London.
    Further Reading
    Harald Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury. A.M.Balantyne and J.Laurence Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    "The aeronautical work of John Stringfellow, with some account of W.S.Henson", Aeronau-tical Classics No. 5 (written by John Stringfellow's son and held by the Royal Aeronautical Society in London).
    JDS

    Biographical history of technology > Stringfellow, John

  • 12 Heathcote, John

    SUBJECT AREA: Textiles
    [br]
    b. 7 August 1783 Duffield, Derbyshire, England
    d. 18 January 1861 Tiverton, Devonshire, England
    [br]
    English inventor of the bobbin-net lace machine.
    [br]
    Heathcote was the son of a small farmer who became blind, obliging the family to move to Long Whatton, near Loughborough, c.1790. He was apprenticed to W.Shepherd, a hosiery-machine maker, and became a frame-smith in the hosiery industry. He moved to Nottingham where he entered the employment of an excellent machine maker named Elliott. He later joined William Caldwell of Hathern, whose daughter he had married. The lace-making apparatus they patented jointly in 1804 had already been anticipated, so Heathcote turned to the problem of making pillow lace, a cottage industry in which women made lace by arranging pins stuck in a pillow in the correct pattern and winding around them thread contained on thin bobbins. He began by analysing the complicated hand-woven lace into simple warp and weft threads and found he could dispense with half the bobbins. The first machine he developed and patented, in 1808, made narrow lace an inch or so wide, but the following year he made much broader lace on an improved version. In his second patent, in 1809, he could make a type of net curtain, Brussels lace, without patterns. His machine made bobbin-net by the use of thin brass discs, between which the thread was wound. As they passed through the warp threads, which were arranged vertically, the warp threads were moved to each side in turn, so as to twist the bobbin threads round the warp threads. The bobbins were in two rows to save space, and jogged on carriages in grooves along a bar running the length of the machine. As the strength of this fabric depended upon bringing the bobbin threads diagonally across, in addition to the forward movement, the machine had to provide for a sideways movement of each bobbin every time the lengthwise course was completed. A high standard of accuracy in manufacture was essential for success. Called the "Old Loughborough", it was acknowledged to be the most complicated machine so far produced. In partnership with a man named Charles Lacy, who supplied the necessary capital, a factory was established at Loughborough that proved highly successful; however, their fifty-five frames were destroyed by Luddites in 1816. Heathcote was awarded damages of £10,000 by the county of Nottingham on the condition it was spent locally, but to avoid further interference he decided to transfer not only his machines but his entire workforce elsewhere and refused the money. In a disused woollen factory at Tiverton in Devonshire, powered by the waters of the river Exe, he built 300 frames of greater width and speed. By continually making inventions and improvements until he retired in 1843, his business flourished and he amassed a large fortune. He patented one machine for silk cocoon-reeling and another for plaiting or braiding. In 1825 he brought out two patents for the mechanical ornamentation or figuring of lace. He acquired a sound knowledge of French prior to opening a steam-powered lace factory in France. The factory proved to be a successful venture that lasted many years. In 1832 he patented a monstrous steam plough that is reputed to have cost him over £12,000 and was claimed to be the best in its day. One of its stated aims was "improved methods of draining land", which he hoped would develop agriculture in Ireland. A cable was used to haul the implement across the land. From 1832 to 1859, Heathcote represented Tiverton in Parliament and, among other benefactions, he built a school for his adopted town.
    [br]
    Bibliography
    1804, with William Caldwell, British patent no. 2,788 (lace-making machine). 1808. British patent no. 3,151 (machine for making narrow lace).
    1809. British patent no. 3,216 (machine for making Brussels lace). 1813, British patent no. 3,673.
    1825, British patent no. 5,103 (mechanical ornamentation of lace). 1825, British patent no. 5,144 (mechanical ornamentation of lace).
    Further Reading
    V.Felkin, 1867, History of the Machine-wrought Hosiery and Lace Manufacture, Nottingham (provides a full account of Heathcote's early life and his inventions).
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (provides more details of his later years).
    W.G.Allen, 1958 John Heathcote and His Heritage (biography).
    M.R.Lane, 1980, The Story of the Steam Plough Works, Fowlers of Leeds, London (for comments about Heathcote's steam plough).
    W.English, 1969, The Textile Industry, London, and C.Singer (ed.), 1958, A History of
    Technology, Vol. V, Oxford: Clarendon Press (both describe the lace-making machine).
    RLH

    Biographical history of technology > Heathcote, John

  • 13 Lewis, John

    SUBJECT AREA: Textiles
    [br]
    fl. c. 1815 England
    [br]
    English developer of a machine for shearing woollen cloth with rotary cutters.
    [br]
    To give a smooth surface to cloth such as the old English broadcloth, the nap was raised and then sheared off. Hand-operated shears of enormous size were used to cut the fibres that stuck up when the cloth was laid over a curved table top. Great skill was required to achieve a smooth finish. Various attempts, such as that in 1784 by James Harmer, a clergyman of Sheffield, were made to mechanize the process by placing several pairs of shears in a frame and operating them by cranks, but success was not achieved. Samuel G. Dow of Albany, New York, patented a rotary shearer in England in 1794, and there was Samuel Dore in the same year too. John Lewis never claimed that he invented the rotary cutter, and it is possible that he made have seen drawings or actual examples of these earlier machines. His claim in his patent of 1815 was that, for the first time, he brought together a number of desirable features in one machine for shearing cloth to achieve the first really successful example. The local story in the Stroudwater district in Gloucestershire is that Lewis obtained this idea from Budding, who as a lad worked for the Lewis family, clothiers at Brinscombe Mills; Budding invented a lawn mower with rotary barrel blades that works on the same principle, patenting it in 1830. In the shearing machine, the cloth was moved underneath the blades, which could be of the same width so that only one operation was needed for each side. Other inventors had similar ideas, and a Stroud engineer, Stephen Price, took out a patent a month after Lewis did. These machines spread quickly in the Gloucestershire textile industry, and by 1830 hand-shearing was extinct. John Lewis was the son of Joseph, who had inherited the Brinscombe Mills in 1790 but must have died before 1815, when his children mortgaged the property for £12,000. Joseph's three sons, George, William and John, worked the mill for a time, but in 1840 William was there alone.
    [br]
    Bibliography
    1815, British patent no. 3,945 (rotary shearing machine).
    Further Reading
    J. de L.Mann, 1971, The Cloth Industry in the West of England from 1660 to 1880, Oxford (the best account of the introduction of the shearing machines).
    J.Tann, 1967, Gloucestershire Woollen Mills, Newton Abbot (includes notes about the Brinscombe Mills).
    K.G.Ponting, 1971, The Woollen Industry of South-West England, Bath; and H.A.Randall, 1965–6, "Some mid-Gloucestershire engineers and inventors", Transactions of the Newcomen Society 38 (both mention Lewis's machine).
    RLH

    Biographical history of technology > Lewis, John

  • 14 they made John out to be a hypocrite

    English-Dutch dictionary > they made John out to be a hypocrite

  • 15 Dancer, John Benjamin

    [br]
    b. 1812 England
    d. 1887 England
    [br]
    English instrument maker and photographer, pioneer of microphotography.
    [br]
    The son of a scientific instrument maker, Dancer was educated privately in Liverpool, where from 1817 his father practised his trade. John Benjamin became a skilled instrument maker in his own right, assisting in the family business until his father's death in 1835. He set up on his own in Liverpool in 1840 and in Manchester in 1841. In the course of his career Dancer made instruments for several of the leading scientists of the day, his clients including Brewster, Dalton and Joule.
    Dancer became interested in photography as soon as the new art was announced in 1839 and practised the processes of both Talbot and Daguerre. It was later claimed that as early as 1839 he used an achromatic lens combination to produce a minute image on a daguerreotype plate, arguably the world's first microphotograph and the precursor of modern microfilm. It was not until the introduction of Archer's wet-collodion process in 1851 that Dancer was able to perfect the technique however. He went on to market a long series of microphotographs which proved extremely popular with both the public and contemporary photographers. It was examples of Dancer's microphotographs that prompted the French photographer Dagron to begin his work in the same field. In 1853 Dancer constructed a binocular stereoscopic camera, the first practicable instrument of its type. In an improved form it was patented and marketed in 1856.
    Dancer also made important contributions to the magic lantern. He was the first to suggest the use of limelight as an illuminant, pioneered the use of photographic lantern slides and devised an ingenious means of switching gas from one lantern illuminant to another to produce what were known as dissolving views. He was a resourceful innovator in other fields of instrumentation and suggested several other minor improvements to scientific apparatus before his working life was sadly terminated by the loss of his sight.
    [br]
    Further Reading
    Anon., 1973, "John Benjamin Dancer, originator of microphotography", British Journal of Photography (16 February): 139–41.
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > Dancer, John Benjamin

  • 16 Metcalf, John

    [br]
    b. 1717 Knaresborough, Yorkshire, England d. 1810
    [br]
    English pioneer road builder.
    [br]
    The son of poor working parents, at the age of 6 an attack of smallpox left him blind; however, this did not restrict his future activities, which included swimming and riding. He learned the violin and was much employed as the fiddle-player at country parties. He saved enough money to buy a horse on which he hunted. He took part in bowls, wrestling and boxing, being a robust six foot two inches tall. He rode to Whitby and went thence by boat to London and made other trips to York, Reading and Windsor. In 1740 Colonel Liddell offered him a seat in his coach from London to Harrogate, but he declined and got there more quickly on foot. He set up a one-horse chaise and a four-wheeler for hire in Harrogate, but the local innkeepers set up in competition in the public hire business. He went into the fish business, buying at the coast and selling in Leeds and other towns, but made little profit so he took up his violin again. During the rebellion of 1745 he recruited for Colonel Thornton and served to fight at Hexham, Newcastle and Falkirk, returning home after the Battle of Culloden. He then started travelling between Yorkshire, where be bought cotton and worsted stockings, and Aberdeen, where he sold horses. He set up a twice-weekly service of stage wagons between Knaresborough and York.
    In 1765 an Act was passed for a turnpike road between Harrogate and Boroughbridge and he offered to build the Master Surveyor, a Mr Ostler, three miles (5 km) of road between Minskip and Fearnly, selling his wagons and his interest in the carrying business. The road was built satisfactorily and on time. He then quoted for a bridge at Boroughbridge and for a turnpike road between Knaresborough and Harrogate. He built many other roads, always doing the survey of the route on his own. The roads crossed bogs on a base of ling and furze. Many of his roads outside Yorkshire were in Lancashire, Cheshire and Derbyshire. In all he built some 180 miles (290 km) of road, for which he was paid some £65,000.
    He worked for thirty years on road building, retiring in old age to a cotton business in Stockport where he had six spinning jennies and a carding engine; however, he found there was little profit in this so he gave the machinery to his son-in-law. The last road he built was from Haslington to Accrington, but due to the rise in labour costs brought about by the demand from the canal boom, he only made £40 profit on a £3,000 contract; the road was completed in 1792, when he retired to his farm at Spofforth at the age of 75. There he died, leaving a wife, four children, twenty grandchildren and ninety greatgrandchildren. His wife was the daughter of the landlord of the Granby Inn, Knaresborough.
    [br]
    Further Reading
    S.Smiles, Lives of the Engineers, Metcalfe, Telford: John Murray.
    IMcN

    Biographical history of technology > Metcalf, John

  • 17 Deere, John

    [br]
    b. 7 February 1804 Rutland, Vermont, USA
    d. 17 May 1886 USA
    [br]
    American inventor and manufacturer of agricultural equipment.
    [br]
    John Deere was the son of a tailor, and first worked as a tanner before becoming apprenticed to a blacksmith. He married Demarius Lamb in 1827, but it appears that competition for blacksmiths was fierce, and the Deere family moved frequently. Two attempts to establish forges ended in fires, and changing partnerships and arguments over debts were to be a feature of Deere's working life. In 1836 John Deere moved west on his own, in an attempt to establish himself. He settled in Grand Detour, Illinois. In this new frontier a blacksmith's skills were sought after, and the blacksmith, with no ready supply of raw materials, had to be able to operate both a furnace for melting metal and a forge for working it. Deere was sufficiently successful for his family to be able to join him. A chance visit to a sawmill and the acquisition of a broken saw blade led to the making of a plough that was to establish John Deere in manufacturing. There were two distinctive features associated with the plough: the soil in the area failed to stick to the steel blade, with obvious benefits to the draught of the implement; and second, the shape of the working mouldboard was square. The reputation that developed with his first three ploughs established that Deere had made the transition from blacksmith to manufacturer.
    Over the next decade he had a number of partnerships and eventually set up a factory in Moline, Illinois, in 1848. The following year he sold 2,136 ploughs, and by early 1850 he was producing 350 ploughs per month. Deere was devastated by the loss of his eldest son in the year that the company moved to Moline. However, his second son, Charles, joined him in 1851 and was to be a major influence on the way in which the company developed over the next half-century. The company branched out into the production of cultivators, harrows, drills and wagons. John Deere himself played an active part in the company, but also played an increasing role in public life, with a particular interest in education. The company was incorporated in 1868.
    [br]
    Further Reading
    The following both provide biographical details of John Deere, but are mainly concerned with the company and the equipment it produced: W.G.Broehl, 1984, John Deere's Company: A History of Deere and Company and its
    Times, American Society of Agricultural Engineers.
    D.Macmillan, 1988, John Deere Tractors and Equipment, American Society of Agricultural Engineers.
    AP

    Biographical history of technology > Deere, John

  • 18 Stevens, John

    [br]
    b. 1749 New York, New York, USA
    d. 6 March 1838 Hoboken, New Jersey, USA
    [br]
    American pioneer of steamboats and railways.
    [br]
    Stevens, a wealthy landowner with an estate at Hoboken on the Hudson River, had his attention drawn to the steamboat of John Fitch in 1786, and thenceforth devoted much of his time and fortune to developing steamboats and mechanical transport. He also had political influence and it was at his instance that Congress in 1790 passed an Act establishing the first patent laws in the USA. The following year Stevens was one of the first recipients of a US patent. This referred to multi-tubular boilers, of both watertube and firetube types, and antedated by many years the work of both Henry Booth and Marc Seguin on the latter.
    A steamboat built in 1798 by John Stevens, Nicholas J.Roosevelt and Stevens's brother-in-law, Robert R.Livingston, in association was unsuccessful, nor was Stevens satisfied with a boat built in 1802 in which a simple rotary steam-en-gine was mounted on the same shaft as a screw propeller. However, although others had experimented earlier with screw propellers, when John Stevens had the Little Juliana built in 1804 he produced the first practical screw steamboat. Steam at 50 psi (3.5 kg/cm2) pressure was supplied by a watertube boiler to a single-cylinder engine which drove two contra-rotating shafts, upon each of which was mounted a screw propeller. This little boat, less than 25 ft (7.6 m) long, was taken backwards and forwards across the Hudson River by two of Stevens's sons, one of whom, R.L. Stevens, was to help his father with many subsequent experiments. The boat, however, was ahead of its time, and steamships were to be driven by paddle wheels until the late 1830s.
    In 1807 John Stevens declined an invitation to join with Robert Fulton and Robert R.Living-ston in their development work, which culminated in successful operation of the PS Clermont that summer; in 1808, however, he launched his own paddle steamer, the Phoenix. But Fulton and Livingston had obtained an effective monopoly of steamer operation on the Hudson and, unable to reach agreement with them, Stevens sent Phoenix to Philadelphia to operate on the Delaware River. The intervening voyage over 150 miles (240 km) of open sea made Phoenix the first ocean-going steamer.
    From about 1810 John Stevens turned his attention to the possibilities of railways. He was at first considered a visionary, but in 1815, at his instance, the New Jersey Assembly created a company to build a railway between the Delaware and Raritan Rivers. It was the first railway charter granted in the USA, although the line it authorized remained unbuilt. To demonstrate the feasibility of the steam locomotive, Stevens built an experimental locomotive in 1825, at the age of 76. With flangeless wheels, guide rollers and rack-and-pinion drive, it ran on a circular track at his Hoboken home; it was the first steam locomotive to be built in America.
    [br]
    Bibliography
    1812, Documents Tending to Prove the Superior Advantages of Rail-ways and Steam-carriages over Canal Navigation.
    He took out patents relating to steam-engines in the USA in 1791, 1803, and 1810, and in England, through his son John Cox Stevens, in 1805.
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin (provides technical details of Stevens's boats).
    J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown (describes his work in relation to that of other steamboat pioneers).
    J.R.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Transactions of the Newcomen Society (1927) 7: 114 (discusses tubular boilers).
    J.R.Day and B.G.Wilson, 1957, Unusual Railways, F.Muller (discusses Stevens's locomotive).
    PJGR

    Biographical history of technology > Stevens, John

  • 19 Coster, John

    [br]
    b. c. 1647 Gloucestershire, England
    d. 13 October 1718 Bristol, England
    [br]
    English innovator in the mining, smelting and working of copper.
    [br]
    John Coster, son of an iron-forge manager in the Forest of Dean, by the age of 38 was at Bristol, where he was "chief agent and sharer therein" in the new lead-smelting methods using coal fuel. In 1685 the work, under Sir Clement Clerke, was abandoned because of patent rights claimed by Lord Grandison, who financed of earlier attempts. Clerke's business turned to the coal-fired smelting of copper under Coster, later acknowledged as responsible for the subsequent success through using an improved reverberatory furnace which separated coal fume from the ores being smelted. The new technique, applicable also to lead and tin smelting, revitalized copper production and provided a basis for new British industry in both copper and brass manufacture during the following century. Coster went on to manage a copper-smelting works, and by the 1690s was supplying Esher copper-and brass-works in Surrey from his Redbrook, Gloucestershire, works on the River Wye. In the next decade he extended his activities to Cornish copper mining, buying ore and organizing ore sales, and supplying the four major copper and brass companies which by then had become established. He also made copper goods in additional water-powered rolling and hammer mills acquired in the Bristol area. Coster was ably assisted by three sons; of these, John and Robert were mainly active in Cornwall. In 1714 the younger John, with his father, patented an "engine for drawing water out of deep mines". The eldest son, Thomas, was more involved at Redbrook, in South Wales and the Bristol area. A few years after the death of his father, Thomas became partner in the brass company of Bristol and sold them the Redbrook site. He became Member of Parliament for Bristol and, by then the only surviving son, planned a large new smelting works at White Rock, Swansea, South Wales, before his death in 1734. Partners outside the family continued the business under a new name.
    [br]
    Bibliography
    1714, British patent 397, with John Coster Jr.
    Further Reading
    Rhys Jenkins, 1942, "Copper works at Redbrook and Bristol", Transactions of the Bristol and Gloucestershire Archaeological Society 63.
    Joan Day, 1974–6, "The Costers: copper smelters and manufacturers", Transactions of the Newcomen Society 47:47–58.
    JD

    Biographical history of technology > Coster, John

  • 20 Nash, John

    [br]
    b. c. 1752 (?) London, England
    d. 13 May 1835 Cowes, Isle of Wight
    [br]
    English architect and town planner.
    [br]
    Nash's name is synonymous with the great scheme carried out for his patron, the Prince Regent, in the early nineteenth century: the development of Marylebone Park from 1811 constituted a "garden city" for the wealthy in the centre of London. Although only a part of Nash's great scheme was actually achieved, an immense amount was carried out, comprising the Regent's Park and its surrounding terraces, the Regent's Street, including All Souls' Church, and the Regent's Palace in the Mall. Not least was Nash's exotic Royal Pavilion at Brighton.
    From the early years of the nineteenth century, Nash and a number of other architects took advantage of the use of structural materials developed as a result of the Industrial Revolution; these included wrought and cast iron and various cements. Nash utilized iron widely in the Regent Street Quadrant, Carlton House Terrace and at the Brighton Pavilion. In the first two of these his iron columns were masonry clad, but at Brighton he unashamedly constructed iron column supports, as in the Royal Kitchen, and his ground floor to first floor cast-iron staircase, in which he took advantage of the malleability of the material to create a "Chinese" bamboo design, was particularly notable. The great eighteenth-century terrace architecture of Bath and much of the later work in London was constructed in stone, but as nineteenth-century needs demanded that more buildings needed to be erected at lower cost and greater speed, brick was used more widely for construction; this was rendered with a cement that could be painted to imitate stone. Nash, in particular, employed this method at Regent's Park and used a stucco made from sand, brickdust, powdered limestone and lead oxide that was suited for exterior work.
    [br]
    Further Reading
    Terence Davis, 1960, The Architecture of John Nash, Studio.
    ——1966, John Nash: The Prince Regent's Architect, Country Life.
    Sir John Summerson, 1980, John Nash: Architect to King George IV, Allen \& Unwin.
    DY

    Biographical history of technology > Nash, John

См. также в других словарях:

  • John Finlaison (Finlayson) — John Finlaison (1783–1860), civil servant, government actuary and the first president of the Institute of Actuaries.Early lifeJohn Finlaison, eldest son of Donald Finlayson and Isabella Sutherland, was born at Thurso in Caithness on the 27th of… …   Wikipedia

  • John Tiller — John Thomas Ibbotson Tiller was born 13 June, 1854 in Manchester.BiographyReference/Sources, Tiller Family Archives, and Tiller s Girls by Doremy Vernon Published 1988 ISBN 0 86051 480 3 John Tiller always had a keen interest in music. He was… …   Wikipedia

  • John Andrew Jackson — John Andrew JacksonThe Experience of a Slave from South Carolina Youth John Andrew Jackson was born in South Carolina. His grandfather was a stolen slave from Africa. John Andrew was born on the plantation to his mother Betty and father, known as …   Wikipedia

  • John Bailey (luthier) — John Bailey (born 1931) is a Luthier who made and repaired guitars and other stringed instruments during the 1960s revival of English folk music and beyond. John lived in London until 1972 when he moved to Dartmouth in Devon. He continued to make …   Wikipedia

  • John de Courcy — (1160 ndash; 1219) was a Norman knight who arrived in Ireland in 1177. From then until his expulsion in 1204, he conquered a considerable territory, endowed religious establishments, built abbeys for both the Benedictines and the Cistercians and… …   Wikipedia

  • John Stagikas — Walters in April 2009 Ring name(s) John Walters[1] RJ Brewer Bil …   Wikipedia

  • John of Ibelin (jurist) — John of Ibelin (1215 ndash; December 1266), count of Jaffa and Ascalon, was a noted jurist and the author of the longest legal treatise from the Kingdom of Jerusalem. He was the son of Philip of Ibelin, bailli of the Kingdom of Cyprus, and Alice… …   Wikipedia

  • John Fantham — (born February 6, 1939) was born in Sheffield and is still Sheffield Wednesday s leading post war goalscorer with 167 goals. He was signed in 1956 and made his Wednesday debut two years later. John firmly establish himself as an able goalscorer… …   Wikipedia

  • John Gill (theologian) — John Gill (November 23, 1697 – October 14, 1771) was an English Baptist, a biblical scholar, and a staunch Calvinist. Gill s relationship with hyper Calvinism is a matter of academic debate.He was born in Kettering, Northamptonshire. In his youth …   Wikipedia

  • John Manson — John James Manson (born 22 June 1968 in Bridge of Allan) and was a Scottish rugby union footballer who played with Hillfoots, Dundee HSFP, Stirling County West of Scotland. John also played professionally for the Caledonia Reds and Glasgow… …   Wikipedia

  • John O'Banion — (16 February 1947 – 14 February 2007) was an American vocalist and actor. Early careerHe was born in Kokomo, Indiana in 1947 and was performing in theater by the age of 13 as well as in a local Indiana band Hog Honda the Chain Guards. By age 15,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»